
In a nutshell: Least-squares best-fitting polynomial 

Least-squares best-fitting linear polynomials 
Given n + 1 points (x0, y0), …, (xn, yn) with at least two different x values, we can find a least-squares best-fitting linear 

polynomial that passes as closely as possible to the n + 1 points as follows:  

1. Create the Vandermonde matrix 
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2. Solve the system VTVa = VTy. This can be simplified to solving 
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3. The first entry is the coefficient of x and the second is the constant coefficient. 

If these n + 1 x-values are equally spaced, we can shift and scale them so that the x-values line up with the points –n, 

1 – n, 2 – n, …, –2, –1, 0, in which case, the system of two linear equations in two unknowns simplifies to: 
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Least-squares best-fitting quadratic polynomials 
Assuming there are at least three different x values, we can find a least-squares best-fitting quadratic polynomial that 

passes as closely as possible to the n + 1 points as follows:  

1. Create the Vandermonde matrix 
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2. Solve the system VTVa = VTy. This can be simplified to solving  
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3. The first entry is the coefficient of x2, the second the coefficient of x, and the last is the constant coefficient. 

If these n + 1 x-values are equally spaced, we can shift and scale them so that the x-values line up with the points –n, 

1 – n, 2 – n, …, –2, –1, 0, in which case, the system of three linear equations in three unknowns simplifies to: 
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