In a nutshell: Least-squares best-fitting polynomial

Least-squares best-fitting linear polynomials
Given n + 1 points (xo, Yo), ..., (Xn, Yn) With at least two different x values, we can find a least-squares best-fitting linear
polynomial that passes as closely as possible to the n + 1 points as follows:
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2. Solve the system V™Va = VTy. This can be simplified to solving 2::0 ¢ ok [31]: Zk?’ .
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3. The first entry is the coefficient of x and the second is the constant coefficient.

If these n + 1 x-values are equally spaced, we can shift and scale them so that the x-values line up with the points —n,
1-n,2-n,...,-2,-1,0, in which case, the system of two linear equations in two unknowns simplifies to:
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Least-squares best-fitting quadratic polynomials
Assuming there are at least three different x values, we can find a least-squares best-fitting quadratic polynomial that
passes as closely as possible to the n + 1 points as follows:
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Create the Vandermonde matrix V =
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and the vector y =

Solve the system VTVa = VTy. This can be simplified to solving
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The first entry is the coefficient of x?
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, the second the coefficient of x, and the last is the constant coefficient.

If these n + 1 x-values are equally spaced, we can shift and scale them so that the x-values line up with the points —n,
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1-n,2-n,...,-2,-1,0, in which case, the system of three linear equations in three unknowns simplifies to:
n(n+1)(2n+1)(3n°+3n-1) n?(n+1)°  n(n+1)(2n+1)
30 2 6
nz(n+l)2 n(n+1)(2n+1) n(n+1)
2
n(n +1)6(2n +1) _n(n2+1) el




